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ABSTRACT

A new approach based on a synergetic combination of statistical/machine learning and deterministic
modeling within atmospheric models is presented. The approach uses neural networks as a statistical or
machine learning technique for an accurate and fast emulation or statistical approximation of model physics
parameterizations. It is applied to development of an accurate and fast approximation of an atmospheric
longwave radiation parameterization for the NCAR Community Atmospheric Model, which is the most
time consuming component of model physics. The developed neural network emulation is two orders of
magnitude, 50–80 times, faster than the original parameterization. A comparison of the parallel 10-yr
climate simulations performed with the original parameterization and its neural network emulations con-
firmed that these simulations produce almost identical results. The obtained results show the conceptual and
practical possibility of an efficient synergetic combination of deterministic and statistical learning compo-
nents within an atmospheric climate or forecast model. A developmental framework and practical valida-
tion criteria for neural network emulations of model physics components are outlined.

1. Introduction

Tremendous developments in numerical modeling
and in computing capabilities during the last decades
contributed dramatically to the scientific and practical
significance of interdisciplinary climate, climate change,
and weather prediction. One of the main problems of
implementing the best atmospheric, ocean, and chem-
istry models is the complexity of physical, chemical, and
biological processes involved. Parameterizations of
model physics are approximate subgrid-scale schemes
based on simplified 1D physical process equations and
observational data. Still, these parameterizations are so
time consuming, even for most powerful modern super-
computers, that different kinds of additional simplifica-
tions are usually applied. For example, some of these
parameterizations are calculated less frequently than
model dynamics (based on solving 3D geophysical fluid
dynamics equations). This may negatively affect the ac-
curacy of model physics calculations and its temporal
consistency with model dynamics and may lead to a

significant reduction of the accuracy of climate simula-
tions and especially weather predictions.

Calculation of model physics in a typical moderate-
resolution general circulation model (GCM), like the
National Center for Atmospheric Research (NCAR)
Community Atmospheric Model (CAM-2) with T42
(�3°) resolution and 26 vertical levels, takes about 70%
of the total model computations. Higher uniform and
variable model resolutions (e.g., Fox-Rabinovitz et al.
2001, 2002; Duffy et al. 2003) and more frequent model
physics calculations, desirable for temporal consistency
with model dynamics, would increase the percentage to
more than 90%.

Such a situation is an important motivation for look-
ing for new alternative numerical algorithms that pro-
vide faster and, most importantly, very accurate ways of
calculating model physics and chemistry. For example,
a traditional statistical technique based on a represen-
tation of the input/output relationship as an expansion
of hierarchical correlated functions has been investi-
gated in some atmospheric chemistry applications (see
Schoendorf et al. 2003, and references therein). How-
ever, current climate and weather prediction models
are complex and nonlinear and they require a much
higher accuracy and better flexibility of approximation
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than those provided by traditional statistical tech-
niques, which are appropriate for simpler applications.

During the last decade, neural network (NN) tech-
niques have found a variety of applications in different
fields and, more specifically, in the accurate and fast
modeling of atmospheric radiative processes (Krasno-
polsky 1997; Chevallier et al. 1998) and in satellite re-
trieval procedures (Krasnopolsky et al. 1995; Krasno-
polsky and Schiller 2003).

Two different NN-based approaches have been de-
veloped to speed up calculations of model physics. The
first approach developed by Chevallier et al. (1998,
2000) introduces NNs as a convenient tool in the tradi-
tional framework of developing new, improved long-
wave radiation parameterizations. Within his approach,
NNs were applied to develop “a new generation of ra-
diative transfer models” (Chevallier et al. 1998). A new
NN-based longwave (LW) radiation parameterization
(“NeuroFlux”) has been successfully developed for the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) model (Chevallier et al. 1998, 2000). In
the NeuroFlux parameterization, the artificial neural
network technique was used in conjunction with a clas-
sical cloud approximation (the multilayer graybody
model). As a result, in this new LW radiation param-
eterization two NNs were used to compute upward and
downward clear-sky parts of LW fluxes, and 2 � K NNs
were used to calculate upward and downward fluxes at
each of K cloud layers. Thus, the developed NeuroFlux
is a battery of (2 � K � 2) NNs (40 NNs for K � 19)
(Chevallier et al. 1998). Each NN has different size and
is trained separately. NeuroFlux is 8 times faster than
the previous parameterization (Chevallier et al. 1998,
2000). NeuroFlux has been used operationally within
the ECMWF four-dimensional variational data assimi-
lation (4DVAR) system since October 2003.

A different new approach based on application of
NNs has been introduced to ocean models (Krasnopol-
sky et al. 2000, 2002; Tolman et al. 2004) and as a pre-
liminary study to an atmospheric (Krasnopolsky et al.
2004) model, the NCAR single-column model with the
physics identical to that of NCAR CAM-2. This ap-
proach introduces an accurate and fast method of cal-
culating the atmospheric physics parameterizations by
developing NN emulations for existing model physics
parameterizations. In this approach, the entire param-
eterization, as a single object (i.e., a continuous or al-
most continuous mapping), is emulated by an NN. In
this case, data used for the NN training are obtained
through a GCM simulation with the original parameter-
ization. An NN emulation of a model physics param-
eterization is a functional imitation of this parameter-
ization, so that the results of model calculations with
the original parameterization and with its NN emula-
tion are physically identical. The high quality of NN
emulations is achieved because of the high accuracy of
approximation of the original components. We prefer

to use the term NN emulation, not NN approximation,
to avoid any possible confusion. The term parameter-
ization already means a simplified approximation of
physical processes. So, in the context of our approach,
the term emulation means a complete functional imita-
tion based on a precise mathematical/statistical ap-
proximation (in a classic mathematical sense) of the
model physics parameterizations.

The key point is that NN emulation is developed here
for the existing parameterizations of atmospheric phys-
ics. This allows us to preserve the integrity and level of
sophistication of the state-of-the-art physical param-
eterizations of atmospheric processes. Because of the
capability of modern machine learning techniques to
provide an unprecedented accuracy in the approxima-
tion of complex systems like model physics, our NN
emulations of model physics parameterizations are
practically identical to original physical parameteriza-
tions. In other words, the underlying idea of the ap-
proach is not developing a new parameterization but
rather emulating a parameterization already very care-
fully tested and validated by its developers offline and
then online through experimentation with the entire
model. It is achieved by using data for NN training that
are simulated by an atmospheric model run with the
original parameterization. Using model-simulated data
for NN training allows us to achieve an unprecedented
accuracy in approximation because simulated data are
free of the problems typical in empirical data (problems
like high level of observational noise, sparse spatial and
temporal coverage, poor representation of extreme
events, etc.). In the context of our approach, the accu-
racy and improved computational performance of NN
emulations are always measured against the original
parameterization. It is noteworthy that the developed
NN emulation has the same inputs and outputs as the
original parameterization and is used as its functional
substitute in the model.

We would like to clarify that the term “existing” pa-
rameterizations means not only the ones currently used
in a model but also new, more sophisticated parameter-
izations that are computationally prohibited in their
original form, but will become computationally “afford-
able” when using their accurate and computationally
more efficient NN emulations. Also, by “existing” we
mean advanced parameterizations currently under de-
velopment, like those of cloud physics in cloud-
resolving models (also called superparameterizations).

The key objectives or questions of this study are the
following: (i) Are these emulations accurate or close
enough to the original physical parameterizations so
that their use (instead of the original parameterization)
allows us to preserve all the richness, integrity, and
detailed features of atmospheric physical processes?
In other words, is the NN emulation a precise emula-
tion of the original physical parameterization? (ii) Are
these emulations fast enough to significantly accelerate
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model physics calculations? (iii) Are these statistical/
machine learning components able to successfully co-
exist or be compatible with the deterministic compo-
nents of climate models, so that their combination can
be efficiently used for accurate and fast climate simu-
lations without any negative impacts on their quality?
(iv) Is there a real/productive synergy here? In other
words, does this new combination of deterministic and
statistical learning approaches lead to new opportuni-
ties in climate simulation and weather prediction? An
additional objective of this study is to outline a devel-
opmental framework and practical criteria for the de-
velopment and validation of NN emulations for model
physics and chemistry components, which could be
used as guidelines in the follow-up developments of NN
emulations for other components of model physics and
chemistry.

More specifically, in this study we apply the NN ap-
proach to approximating the LW radiation parameter-
ization in the NCAR CAM-2 (e.g., see the special issue
of Journal of Climate, 1998, vol. 11, no. 6). Longwave
radiation parameterization has been selected for this
first study because calculating the LW [and shortwave
(SW)] radiation is the most time-consuming part of the
atmospheric physics computations. For example, in the
NCAR CAM-2 T42, total (LW and SW) radiation takes
almost 60% of the time required for the model physics
calculations.

The most efficient and convenient way of developing
NN emulations for model physics components is devel-
oping a single NN for a model physics parameteriza-
tion. Such an approach was introduced in our prelimi-
nary study (Krasnopolsky et al. 2004) wherein we de-
veloped NN emulation for the NCAR LW radiation
scheme in the framework of the NCAR single-column
model. This study showed the feasibility of the ap-
proach. In the current study, we extend the developed
approach to build an NN emulation for the NCAR
CAM-2 LW radiation parameterization. We also per-
formed and analyzed past climate simulations using the
NN emulation. A more detailed discussion of its impact
on climate simulation, with a comprehensive analysis of
climate characteristics and the adjustment of NN emu-
lations to account for climate change, goes beyond the
scope of this paper and will be presented later.

It is noteworthy that the initial motivation for this
study came from the authors’ discussion of the possi-
bility of an effective calculation of model physics on a
global uniform fine resolution grid for stretched-grid
GCMs, instead of calculating model physics on an in-
termediate, global uniform resolution grid or directly
on a stretched grid (e.g., Fox-Rabinovitz et al. 2001,
2002). Calculation of model physics on a global uniform
fine resolution grid is feasible only when using the
much more computationally efficient NN emulations.
These issues will be explored in a separate study.

Neural network emulations of model physics are
based on the fact that any parameterization of model

physics can be considered as a continuous or almost
continuous (with finite discontinuities) mapping (input
vector versus output vector dependence), and NNs
(multilayer perceptrons in our case) are a generic tool
for approximating such mappings (Cybenko 1989;
Funahashi 1989; Hornik 1991; Chen and Chen 1995a,b;
Attali and Pagès 1997). Neural networking is an ana-
lytical approximation that uses a family of functions
like

yq � aq0 � �
j�1

k

aqj��bj0 � �
i�1

n

bjixi�; q � 1, 2, . . . , m,

�1�

where xi and yq are components of the input and output
vectors respectively, a and b are fitting parameters, and
� is a so-called activation function (usually a hyperbolic
tangent), n and m are the numbers of inputs and out-
puts, respectively, and k is the number of neurons in the
hidden layer (see Ripley 1997 for more details).

In section 2, NN emulation of the NCAR CAM-2
LW radiation parameterization is developed and ana-
lyzed in terms of its accuracy and computational per-
formance. In section 3, the use of the developed accu-
rate and fast NN emulation within CAM-2 is validated
in terms of its impact on climate simulation. Section 4
contains discussion and conclusions.

2. NN emulation of the NCAR CAM longwave
atmospheric radiation parameterization

a. General or background information

The major requirement for developing NN emula-
tions for model physics is obtaining an extremely high
accuracy of NN emulations with practically zero biases
or systematic approximation errors (i.e., the systematic
errors that NN emulation introduces in addition to a
bias of the original parameterization). Providing very
small additional bias is a necessary condition for assur-
ing that additional errors are not accumulating during
long-term climate simulations when using developed
NN emulations. The choice of an optimal version of NN
emulation is based on the accuracy, not the amount of
speedup. All the obtained NN emulations guarantee a
very significant speedup anyway.

The T42/26-level NCAR CAM-2 is used in this study.
The function of the LW radiation parameterization in
atmospheric GCMs is to calculate the heating fluxes
and rates produced by LW radiation processes in the
atmosphere. The complete description of the NCAR
CAM LW radiation parameterization is presented by
Collins (2001) and Collins et al. (2002).

The input vectors for the NCAR CAM-2 LW radia-
tion parameterization include 10 profiles [atmospheric

1372 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



temperature, humidity, ozone, CO2, N2O, CH4, two
chlorofluorocarbon (CFC) mixing ratios (the annual
mean atmospheric mole fractions for halocarbons),
pressure, and cloudiness] and one relevant surface
characteristic (upward LW flux at the surface). The
CAM-2 LW radiation parameterization output vectors
consist of the profile of heating rates (HRs), and several
radiation fluxes including the outgoing LW radiation
flux from the top layer of the model atmosphere [the
outgoing LW radiation (OLR)].

The NN emulation of the NCAR CAM-2 LW radia-
tion parameterization has the same inputs [total 220;
n � 220 in Eq. (1)] and the same outputs [total 33; m �
33 in Eq. (1)] as the original NCAR CAM-2 LW radia-
tion parameterization. We have developed several
NNs, all of which have one hidden layer with 20, 90,
150, 200, 250, or 300 neurons [k � 20, 90, 150, 200, 250,
300 in Eq. (1)]. Varying the number of hidden neurons
allows us to demonstrate the accuracy of approximation
dependence on this parameter as well as its conver-
gence, and as a result to provide the sufficient accuracy
of approximation for the climate model.

The NCAR CAM-2 was run for 2 yr to generate
representative datasets. The first year of simulation was
divided into two independent parts, each containing in-
put/output vector combinations. The first part was used
for training and the second was used for tests (control
of overfitting, control of a NN architecture, etc.). The
second year of simulation was used to create a valida-
tion dataset, completely independent from both train-
ing and test datasets. This third dataset was used for
validations only. All approximation statistics presented
in the rest of this section are calculated using this inde-
pendent validation dataset.

b. Bulk approximation error statistics

To ensure a high quality of representation of long-
wave radiation processes, the accuracy of the NN emu-
lations have been carefully investigated. Our NN emu-
lations have been validated against the original NCAR
LW parameterization. For calculating the error statis-
tics presented in Table 1 and the figures of this section,
the original parameterization and its NN emulation
have been applied to the validation data. Two sets of

corresponding HR profiles have been generated. The
total and level bias (or mean error), total and level
RMSE, profile RMSE (PRMSE), and 	PRMSE pre-
sented in Table 1 have been calculated as follows. The
outputs of the original parameterization and NN emu-
lation can be represented as Y(i, j) and YNN(i, j), cor-
respondingly, where i � (lat, lon), i � 1, . . . , N is the
horizontal location of a vertical profile, N is the number
of horizontal grid points, and j � 1, . . . , L is the vertical
index, where L is the number of the vertical levels.

The mean difference, B (bias or a systematic error of
approximation), and the root-mean-square difference
(a root-mean-square error of approximation), RMSE,
between the original parameterization and its NN emu-
lation, are calculated as follows:

B �
1

NL �
i�1

N

�
j�1

L


Y�i, j� � YNN�i, j��

RMSE � ��
i�1

N

�
j�1

L


Y�i, j� � YNN�i, j��2

NL
. �2�

These two characteristics [Eqs. (2)] describe the accu-
racy of the NN emulation integrated over the entire 4D
(latitude, longitude, height, and time) dataset. Using a
slight modification of Eqs. (2), bias and RMSE for mth
vertical level can be calculated:

Bm �
1
N �

i�1

N


Y�i, m� � YNN�i, m��

RMSEm � ��
i�1

N


Y�i, m� � YNN�i, m��2

N
. �3�

The root-mean-square error can also be calculated for
each ith profile:

prmse�i� ��1
L �

j�1

L


Y�i, j� � YNN�i, j��2. �4�

This error is a function of a horizontal location of the
profile. It can be used to calculate mean profile root-

TABLE 1. Statistics estimating the accuracy of HR (K day�1) calculations and computational performance for NCAR CAM-2 LWR
using NN emulation vs the original parameterization. Bias26 and RMSE26 (K day�1) correspond to the lowest layer. Total mean value
for HRs � �1.36 K day�1 and standard deviation 	HR � 1.93 K day�1. For the lowest level (26th), mean value for HRs � �2.22 K
day�1 and 	HR � 5.57 K day�1. Corresponding statistics (K day�1) for the ECMWF model are shown just as a point of reference.

Model Bias RMSE PRMSE 	PRMSE Bias26 RMSE26 Performance

NCAR NN90 �4.0 � 10�4 0.33 0.27 0.19 �6.0 � 10�4 0.85 �80 times faster
NCAR NN150 1.0 � 10�4 0.28 0.23 0.16 �4.0 � 10�3 0.79 �50 times faster
NCAR NN200 5.0 � 10�5 0.26 0.21 0.15 2.0 � 10�3 0.71 �35 times faster
ECMWF 0.05 0.1 0.3* 1.4* �8 times faster

* These statistics are for the lowest (31st) level in ECMWF model.
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mean-square error, PRMSE, and its standard deviation,
	PRMSE, which are location independent:

PRMSE �
1
N �

i�1

N

prmse�i�

�PRMSE �� 1
N � 1 �

i�1

N


prmse�i� � PRMSE�2 . �5�

Table 1 shows that the profile (PRMSE) error and the
RMSE are close but not equal.

Figure 1 illustrates improvements (convergence) in
four error statistics when the number of hidden neu-
rons, k, increases from 20 to 300. These statistics are
RMSE (2), RMSE26 [m � 26 in Eq.(3)], PRMSE, and
	PRMSE (5). The 26th, or lowest model level errors, are
presented because they are the maximum errors for the
entire vertical profile. After a sizeable improvement for
k increasing from 20 to 90, the errors practically reach
convergence for k � 150, and even for k � 90. All our
NN emulations have almost zero or negligible system-
atic errors (biases), which (see Fig. 2) practically do not
depend on height and are indistinguishable from each
other for the figure scale. The rest of Fig. 2 shows the
vertical profiles of RMSEs (2) for six developed NNs.
For all NNs with the number of hidden neurons starting
at 90, the RMSE (which is a purely random error in the
case of a zero bias) for the 10 upper levels does not
exceed 0.2 K day�1, reaching 0.4 K day�1 at the 22d
level. For the two lowest levels, RMSE is about 0.6–0.8

K day�1. Statistics (biases and RMSEs) for the lowest
(26th) level are also included in Table 1. The natural
variability (	) of the HRs is significantly higher (see in
the caption of Table 1) at the lowest levels than at the
higher ones. Hence, relative errors in the HRs calcu-
lated with respect to the natural variability (	) are ap-
proximately the same as errors at the higher levels.

Hereafter, NN20, NN90, NN150, NN200, NN250, and
NN300 stand for NNs with 20, 90, 150, 200, 250, and 300
hidden neurons. Because NN20 is less accurate, and
NN250 and NN300 do not provide a significantly better
accuracy than NN200, only three NNs, namely NN90,
NN150, and NN200, are included in Table 1. Table 1
shows bulk validation statistics for the accuracy of ap-
proximation and computational performance for the
three best (in terms of accuracy and performance) de-
veloped NN emulations. Here, statistics for comparison
of the ECMWF operational and NeuroFlux LW radia-
tion parameterizations are also shown just as a refer-
ence point. Mean values and standard deviations (	HR)

FIG. 1. Convergence of four error statistics when the number of
hidden neurons increases from 20 to 300. RMSE [(2)]—solid;
PRMSE [(5)]—dashed; 	PRMSE [(5)]—dotted; and RMSE26
[(3)]—dotted–dashed lines.

FIG. 2. The vertical profiles of mean approximation errors at
each of 26 levels, level biases (the left vertical line), and level
RMSEs [(3)], for six developed NNs (NN20—thin solid; NN90—
thick solid; NN150—dashed; NN200—dotted; NN250—dashed–
dotted; NN300—dashed–double-dotted lines) all in K day�1.
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of HRs are presented in the title of Table 1 for a better
understanding of relative errors.

In addition to this high approximation accuracy, our
NN emulation performs about 80–35 times faster (for
NN90, NN150, and NN200, correspondingly) than the
original NCAR LW radiation parameterization. Table
1 and Figs. 1 and 2 clearly demonstrate a systematic
improvement in approximation accuracy with increas-
ing NN hidden layer size. Table 1 also demonstrates a
reciprocal reduction in performance gain, from 80 to 35
times faster, than the original parameterization. This
offers an opportunity for the accuracy versus perfor-
mance trade-off; however, as we mentioned earlier, in
this trade-off the key requirement, which allows the
successful, synergetic functioning of NN emulation
within the model, is to preserve the accuracy and integ-
rity of the description of the corresponding physical
process.

All three NNs (including NN90) provide an accurate
approximation of the original parameterization. Actu-
ally, there is no difference between 1%, 2%, or 3% cost
of the original parameterization calculations with
NN90, NN150, or NN200 (which are 80, 50, or 35 times
faster). Therefore, we would recommend and use the
accurate and reliably converged version. Obviously, the
final decision on the optimal version of the NN, which
has to be implemented into the model, should be made
based on testing these NNs in a climate model (see
section 3). We would like to stress that the speedup is
achieved for the NN emulation of the entire LW radia-
tion scheme that includes calculations of optical prop-
erties (emissivity and absorptivity), HRs, and radiative
fluxes. Our speedup for the entire LW radiation
scheme provides the opportunity of calculating it
hourly, that is, as frequently as HRs and radiative flux
calculations, at a very limited computational cost.

c. Detailed evaluation of approximation errors

Both the original parameterization and its NN emu-
lation are complicated multidimensional objects (map-
pings). In this case, calculating bulk statistics is not suf-
ficient for evaluating the accuracy of the approxima-
tion. We evaluated many different statistical metrics of
the approximation accuracy, the most important of
which are shown in Figs. 1–6. Figure 3 shows the typical
level statistics (for level number 20 from the top) based
on NN150 emulation. It contains the scatterplot Y ver-
sus YNN (upper-left panel), the distribution of errors or
differences Y(i, j) � YNN(i, j) (lower-left panel), and
bias and RMSE as functions of HRs (the upper- and
lower-right panels, correspondingly). The scatterplot
cloud contains hundreds of thousands of points, which
are tightly concentrated along the diagonal, with only
several points at the upper and lover ends located out-
side the one sigma interval (marked by dotted lines).
The error distribution is strongly picked about 0 K
day�1, and it is narrower than the normal distribution

with the same mean and standard deviation (dotted
line), which indicates a lesser amount of larger errors
than in the case of the normal error distribution. Similar
behavior takes place in the distribution of the prmse
profile rms errors [see Eq. (4)] shown in Fig. 4. This
distribution is also significantly sharper than the normal
one with the same mean value and standard deviation.

The two right panels in Fig. 3 show both systematic
(bias) and random (RMSE) approximation errors as
functions of HRs. An increase in errors at the tails of
the HR distribution (shown with the dashed line),
where NN was exposed to an insufficient amount of
training data, can be clearly seen. More training data
should be simulated in this part of the domain to im-
prove the approximation accuracy there.

Figure 5 shows the absolute zonal mean bias (left
column) and zonal mean RMSE (right column). Three
rows correspond to three different NNs, namely NN90,
NN150, and NN200, from top to bottom, correspond-
ingly. When the accuracy of approximation increases
(with increasing the number of hidden neurons in the
NN), both zonal mean bias and RMSE decrease signifi-
cantly. Comparing the top, middle, and bottom panels,
we see that small areas with bias 0.01 K day�1 (left
column) in the lower part of the atmosphere disappear
completely. Also, the small areas of RMSE 0.25 K
day�1 (right column) disappear at the upper levels. In
the lower part of the atmosphere, small areas with
RMSE 1 K day�1 (right column) begin to disappear
for NN150, and even more so for NN200, and the areas
with RMSE 0.5 K day�1 are confined to just two small
spots located in the polar areas.

Figures 6a–c show three typical individual profiles
with profile rms errors [prmse; Eq. (4)] close to their
mean [prmse; Eq. (5)]. Each of these profiles demon-
strates a complicated vertical variability for original and
NN emulation profiles that are very close to each other.
There is an obvious convergence of the emulating pro-
files (gray) to the original (black). The prmse for each
profile systematically improves when the number of
neurons in the NN hidden layer increases from 90 to
200. This convergence, however, is not uniform at some
vertical levels. For example, at level 14 in Fig. 6a,
NN150 (gray dashed line) is slightly closer to the origi-
nal profile (black solid line) than NN200 (gray dotted
line). It is remarkable that for all individual profiles all
the NN emulations are very close to the original pro-
files. It shows a high uniform convergence and accuracy
at the profile and even gridpoint level.

The analysis of approximation errors presented
above shows that the NN technique is capable of pro-
viding NN emulations with practically zero systematic
errors or biases, and small random errors. Moreover,
the distributions of errors are usually narrower than the
corresponding normal distributions, which indicate a
significantly smaller amount of larger errors. An addi-
tional analysis shows that larger errors are located in
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the areas supported by a smaller amount of training
data. In these areas NN is forced to extrapolate. These
areas should be enriched by additional simulated data
to improve the accuracy of the NN emulation there.
Namely, the original parameterization should be run in
this subdomain to generate more data.

3. Results of climate simulations

In assessing the impact of using an NN emulation of
the LW radiation parameterization, the parallel NCAR
CAM-2 climate simulations were performed with the
original LW radiation parameterization (the control
run) and with its NN emulations, which are described in
section 2. The climate simulations have been run for 10

yr starting after the training and validation period (see
section 2), namely for years 3 through 12. All the com-
parisons of the control and NN emulation runs pre-
sented in this section are done by analyzing the time-
(10 yr) mean differences between the results of differ-
ent runs.

Preservation of time means of prognostic and diag-
nostic fields is one of the most important/necessary
properties in climate simulations. In the climate simu-
lations performed with the original LWR parameteriza-
tion and its NN emulations, the time-mean surface
pressure is almost precisely preserved. For example, for
the NN150 run there is a negligible difference of
0.0001% between the NN and control runs (see Table
2). Other time global means, some of which are also

FIG. 3. Typical level statistics (for the 20th from the top level, about 625 hPa). (upper left) The scatterplot Y
(original HRs) vs YNN (NN150 HRs) both in K day�1. Large dark circles and associated bars show average in the
bin and an error bar. (lower left) The distribution of errors or differences Y(i, j) � YNN(i, j) and the normal
distribution with the same mean and standard deviation (dotted line); horizontal axis corresponds to errors in K
day�1. (upper right) Bias and (lower right) RMSE (K day�1) as functions of HRs (K day�1) with event distribution
(dashed lines).
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presented in Table 2, show a profound similarity be-
tween the simulations in terms of these global time
means, with the differences usually within about
0.03%–0.1% and not exceeding 0.1%–0.3%. Other
simulations (with NN90 and NN200) show similar re-
sults.

Let us now consider some key simulated diagnostic
and prognostic fields and their differences, produced in
the control and NN emulation runs. The time-mean
vertical distributions of zonal means for LW radiation
HRs (QRL), potential temperature (T), zonal wind
(U), and specific humidity (Q) are presented in Figs.
7–10. The control simulation (with the original LWR
parameterization) is shown in (a); (b) and (c) are two
simulations, with NN90 and NN150 emulations, corre-
spondingly; (d) and (e) are biases or deviations of these
NN90 and NN150 simulations from the control simula-
tion or (b) – (a) and (c) – (a), correspondingly. There-
fore, the biases are calculated against the control run.
The general assessment of the presented field distribu-
tions and their biases is as follows. The field distribu-
tions for the control and NN emulation runs are very
close, showing a striking similarity to each other that
can be seen by the comparing (a) with (b) and (c) for
Figs. 7–10. Such a profound pattern similarity is further
confirmed and quantified by the small biases shown in
(d) and even smaller, almost negligible biases shown in
panel (e) of Figs. 7–10.

Now let us discuss the results in more detail. The
LWR HRs for the NN90 run (Fig. 7b) show four minor
spots located within the 400–500-hPa layer that are not
present in the control (Fig. 7a) and the NN150 (Fig. 7c)
runs. These differences are more visible in the bias pat-
tern of the NN90 run (Fig. 7d). Actually, small positive
and negative biases, in the 0.05–0.2 K day�1 range, are
present in the troposphere. For some spots, within the
lower-tropospheric 900–1000-hPa layer, the bias in-
creases to 0.6–1.0 K day�1 (Fig. 7d). For the NN90 run,

bias can be reduced by extending training datasets for
the tails of the distribution as mentioned above in sec-
tion 2. However, for the NN150 run (Fig. 7e), the bias
pattern has cleared up significantly (bias is mostly
within 0.01–0.05 K day�1) and contains just a few small
positive and negative spots in the lower-tropospheric
layer, including those with a maximum magnitude of
0.2–0.4 K day�1 located near the poles. Bias in the
stratospheric domain (above 100 hPa) is significantly
smaller than that of the tropospheric domain. For both
NN90 and NN150 runs, it is well below 0.05 K day�1,
especially for the NN150 run (Figs. 7d and 7e), with the
exception of polar areas near the top model levels for
the NN90 run, where bias reaches 0.1–0.15 K day�1

within the polar domain (Figs. 7d).
The distributions of temperature, zonal wind, and

specific humidity for the control, NN90, and NN150
runs are practically indistinguishable from each other
[for Figs. 8–10, cf. (a), (b), and (c)]. The differences
between runs can be seen only in bias distributions [cf.
(d) and (e) for Figs. 8–10]. Temperature bias for the
NN90 run (Fig. 8d) is mostly limited by magnitude to
0.5 K. It increases to a maximum of 1 K for polar do-
mains within the 300–200-hPa layer, and for a few spots
at the �100 hPa level. In the middle-stratosphere polar
domains, it increases to 1–1.5 K. Bias for the NN150 run
(Fig. 8e) is largely reduced everywhere compared to
that of the NN90 run (Fig. 8d), mostly to 0.1–0.2 K by
magnitude, with the exception of a few very small spots
where it approaches 0.5 K.

Zonal wind bias for the entire troposphere and
stratosphere domain in the NN90 run (Fig. 9d) is small,
mostly below 0.5 m s�1, and does not exceed 1 m s�1 by
magnitude. Bias is slightly larger within the small spot
around 25°S at 100 hPa, and it increases to 2.5 m s�1 for
the upper model level within the polar domains. For the
NN150 run (Fig. 9e), bias is significantly reduced to
0.1–0.2 m s�1, with a maximum magnitude of only 0.5
m s�1 for a few small spots. It is noteworthy that me-
ridional wind bias for the NN90 run (not shown) is
mostly below 0.05 m s�1 and is within 0.1 m s�1 by mag-
nitude. Only in the small areas around the tropical
tropopause does bias reach 0.1–0.15 m s�1, which does
not affect the Hadley and Ferrell circulations. Bias for
the NN150 run is further reduced to 0.01–0.02 m s�1,
with the exception of a few very small spots where it
increases to 0.05 m s�1.

Specific humidity bias in the NN90 run (Fig. 10d)
shows a maximum of 0.3–0.4 g kg�1 around �700 hPa
in the equatorial domain. For the NN150 run (Fig. 10e),
bias is significantly smaller, mostly 0.01–0.02 g kg�1 by
magnitude, with a maximum of 0.05 g kg�1 over a
couple of small spots in the subtropical lower tropo-
sphere.

The above comparison of biases for NN90 and
NN150 runs [see (d) and (e) of Figs. 7–10] confirms that
increasing the number of hidden neurons from 90 to
150 leads to a measurable bias reduction that positively

FIG. 4. The distribution of the PRMSE [(4)]—profile rms errors
(K day�1) and the normal distribution with the same mean and
standard deviation (dotted line).
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affects the accuracy of the NN150 climate simulation in
terms of its profound similarity to the control simula-
tion. Most importantly, biases for both NN90 and
NN150 10-yr simulations do not accumulate over time.
The LW radiation HRs obtained in these climate simu-
lations maintain the level of approximation accuracy
consistent with that obtained in section 2.

4. Discussion and concluding remarks

In this study, we presented a new approach based on
a synergetic combination of deterministic modeling and
a machine learning technique within an atmospheric
model. This approach uses neural networks as a statis-
tical or machine learning technique to develop highly

FIG. 5. (left) Absolute zonal mean bias and (right) zonal mean rmse for (top) NN90, (middle) NN150, and (bottom) NN200.
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accurate and fast approximations for model physics
components. The approach consists of four major steps:

1) Analysis of the structure and complexity of the
original parameterization for determining the topol-
ogy (architecture) of the future NN emulation by
specifying all the inputs and outputs and selecting
the initial number of neurons in the NN hidden
layer.

2) Generation of representative datasets for training,
testing, and validation. This approach is based on
using data simulated during the GCM runs with the
original parameterization, which allows us to pro-
duce NN emulations that are physically identical to
the original parameterizations. For weather predic-
tion applications, the use of blended (simulated, as-
similated, and observational) data for NN training

could be beneficial. To account for insufficient sam-
pling for some events, it is possible to run the origi-
nal parameterization offline and generate comple-
mentary data to extend sampling. This offline simu-
lation can also be used in the context of adjusting
NN emulations for future climate change.

3) NN training. Several different versions of NNs,
with different number of neurons in a hidden
layer, should be trained to determine the optimal
size of the hidden layer, which provides the suffi-
cient accuracy of approximation; several initializa-
tion procedures and training algorithms should be
applied to assure that an optimal minimization is
achieved.

4) Validation of trained NN emulation consisting of
two steps. The first step is validation of the NN ap-
proximation against the original parameterization

TABLE 2. Time and global means for mass (mean sea level pressure) and other model diagnostics for the NCAR CAM-2 climate
simulations with the original LWR parameterization and its NN emulation (NN150) and their differences (%).

Field
Original LWR

parameterization NN emulation Difference (%)

Mean sea level pressure (hPa) 1011.480 1011.481 0.0001
Surface temperature (K) 289.003 289.001 0.0007
Total precipitation (mm day�1) 2.275 2.273 0.09
Total cloudiness (fractions 0.1 to 1.0) 0.607 0.609 0.3
LWR heating rates (K day�1) �1.698 �1.700 0.1
–OLR (W m�2) 234.43 234.63 0.08
Latent heat flux (W m�2) 82.84 82.82 0.03

FIG. 6. Typical profiles with PRMSE [(4)] (a) above, (b) close to, and (c) below PRMSE [(5)]. Solid black—original profile; solid
gray—its NN90 emulation; dashed gray—NN150 emulation; and dotted gray—NN200 emulation.
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using an independent validation dataset. The second
validation step consists of performing comprehen-
sive parallel model runs with the original parameter-
ization (the control run) and the developed NN
emulations.

In this study, we presented an NN emulation of
an atmospheric LW radiation parameterization used
in NCAR CAM-2. The LW radiation has been se-
lected as the most time-consuming component of
the NCAR model physics. We evaluated the accu-
racy and computational performance of this NN
emulation. The obtained results show the following:

(i) The conceptual and practical possibility of de-
veloping an accurate NN emulation of model
physics components, which preserves the integ-
rity and all the detailed features of atmospheric
physical processes. The practical possibility of
experimentations with NNs with hundreds of
inputs, hundreds of neurons in a hidden layer,
and tens or more of outputs, using a training
dataset with about 100 000 records. The effi-
cient software for a standard workstation with-
out any hardware acceleration has been devel-
oped, allowing such experimentations.

(ii) These accurate NN emulations are very fast (up
to 80 times) despite the large size of the corre-
sponding NNs, so the significant speedup of
model physics calculations can be achieved
without compromising its accuracy.

(iii) These statistical/machine learning techniques
can be successfully combined with determinis-
tic climate model components so that their syn-
ergy can be efficiently used for climate simula-
tions without any negative impacts on simula-
tion quality as it was shown by the presented
decadal climate simulation.

(iv) This productive synergy or the new combina-
tion of the state-of-the-art deterministic and
statistical learning approaches leads to new op-
portunities in climate simulation and weather
prediction. For example, more accurate and
more sophisticated atmospheric parameteriza-
tions, which may be currently computationally
prohibited because they are too time consum-
ing even for most powerful supercomputers
available, may exist or be developed in the fu-
ture. After developing NN emulations for these
parameterizations they may become computa-
tionally feasible.

The systematic error introduced by NN emulation is
negligible and does not accumulate over the model in-
tegration in time. The random error for NN emulation
is also small, as shown in section 2. The distributions of
error are usually narrower than the corresponding nor-
mal distributions, which indicates a significantly smaller
amount of larger errors. The application of this ap-
proach allows us to accelerate the calculation of the LW

FIG. 7. Zonal and time- (10 yr) mean ver-
tical distributions of instantaneous long-
wave radiation (LWR) heating rates (QRL)
for (a) the control NCAR CAM-2 simula-
tion with the original LW radiation param-
eterization; (b) NCAR CAM-2 simulation
using NN90 emulation of LW radiation pa-
rameterization; (c) NCAR CAM-2 simula-
tion using NN150 emulation of LW radia-
tion parameterization; (d) bias or deviation
of the NN90 simulation from the control
simulation or (b) – (a); (e) bias or deviation
of the NN150 simulation from the control
simulation or (c) – (a). The contour inter-
vals for (a), (b), and (c) are 0.5 K day�1 and
for (d) and (e) 0.05 K day�1.
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radiation parameterization by about 50–80 times (or
takes only 1%–2% of the original parameterization
computation time) for NN150 and NN90, correspond-
ingly, without compromising the accuracy and integrity
of the original longwave radiation parameterization.

The impact of using NN emulation on climate simu-
lation has been assessed by a comparison of some basic
climate characteristics of parallel NCAR CAM-2 simu-
lations, calculated with the original LW radiation pa-
rameterization and its NN emulations. The differences
between the simulations with the original LW radiation
parameterization and its NN emulations appear to be
very small for simulated fields. The results obtained
show that the NN emulation of the considered atmo-
spheric LW radiation parameterization is accurate and
provides a significantly improved computational effi-
ciency.

There are several important topics—like adjustments
of NN emulations to account for climate change, an
explicit evaluation of NN emulation Jacobian, and deal-
ing with giant NNs in the case of higher resolutions—
that go beyond the scope of this study. However, these
topics should and will be addressed in our follow-up
investigations. In this methodological study, we dealt
with the past climate. In the follow-up efforts we will
consider different options (like, e.g., extensions of the
training domain, using recurrent NNs, and adopting
some control theory tools), which machine learning
techniques can provide, to adjust NN emulations to cli-
mate change.

In Krasnopolsky et al. (2002) we demonstrated the
acceptable quality of the NN emulation Jacobian for
moderate-size NN emulations. For the large-size NN
emulations, an explicit investigation of the quality of
the NN emulation Jacobian should be conducted.
When the Jacobian is a very highly dimensional object,
a special study is desirable, like that of Chevallier and
Mahfouf (2001). In our case, the high accuracy of ap-
proximation and interpolation demonstrated by our
NN emulation on an independent validation dataset
and during the parallel run of NCAR CAM-2 demon-
strates, although indirectly, the practically sufficient ac-
curacy of Jacobians in terms of the considered applica-
tion.

Increasing the model resolution will result in increas-
ing the size of NNs. Training such NNs will become
more and more time consuming. In our previous studies
(Krasnopolsky et al. 2002; Tolman et al. 2005), we pro-
posed a solution for this problem. Before applying an
NN technique, inputs and outputs are decomposed us-
ing EOFs (or another complete basis). Then NN is ap-
plied to relate the coefficients of these decompositions.
This approach allowed us to reduce the size of input
and output vectors (and the size of the NN emulation)
by an order of magnitude.

The success of the approach introduced in this paper
for approximating the longwave radiation parameter-
ization opens the opportunity for a complete open-
minded reexamination of computations for all model
physics components. The next logical steps would be

FIG. 8. Same as Fig. 7, but for tempera-
ture. The contour intervals for (a), (b), and
(c) are 5 K and for (d) and (e) 0.5 K.
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FIG. 10. Same as Fig. 7, but for specific
humidity. The contour intervals for (a), (b),
and (c) are 2 g kg�1 and for (d) and (e) 0.05
g kg�1.

FIG. 9. Same as Fig. 7, but for zonal wind.
The contour intervals for (a), (b), and (c)
are 5 m s�1 and for (d) and (e) 0.5 m s�1.
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developing NN emulations for the full atmospheric ra-
diation (including shortwave) block and then cautiously
approaching the more nonlinear and, therefore, chal-
lenging moisture physics block, including convection,
cloudiness, and turbulence. Eventually, NN emulations
for all the diabatic forcing components could be intro-
duced. This, in turn, could potentially make an impor-
tant positive impact on extensive experimentation with
the complex models needed to improve climate change
and variability assessments, as well as weather predic-
tion. It should be emphasized that the results obtained
on the accuracy and efficiency of the NN emulation
may facilitate a collaborative effort (with model physics
scheme developers) to develop new, more sophisticated
parameterizations of model physics (superparameter-
izations, e.g., cloud physics) that are now computation-
ally prohibitive. This is also true for computational
bottlenecks in model dynamics like complicated solv-
ers, iterations, transformations, inversions, etc.
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